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Synopsis 
The analysis of a stationary, rotationally symmetric liquid jet which leads to an ex- 

pression for the average normal stress a t  the exit of a capillary tube is reexamined with 
particular attention to the effect of surface tension. The limiting case of a nearly 
cylindrical jet is rompared with the analysis presented by Gavis and hfiddleman. 

' 1. Introduction 

There has been considerable interest in attempting to use measure- 
ments on the stationary liquid jet formed a t  the exit of a horizontal capil- 
lary tube to determine with some approximation the relation between 
two of the normal components of stress within the flow in the 
Several neglect the effect of surface tension in treating this 
problem. More recently Gavis and ;\liddleman5-8 suggested that surface 
tension may not be negligible in many cases. Below we derive a more 
complete expression for the effect of surface tension which is compared 
with that of Gavis and Iliddleman in the limit of a nearly cylindrical jet. 

2. Analysis 

In what follows we make a momentum balance on a portion of the 
capillary jet. 

Let us choose as our system of volume V the fluid contained in the jet 
between the exit plane of the tube, S1 (assumed to be normal to the flow), 
and some plane Sz parallel to S1 and a t  a sufficient distance downstream 
that the velocity in the jet is no longer a function of axial position. This 
last condition makes it clear that the axis of the jet must be h~r izonta l .~  
The bounding surface S of V can be divided into three parts: S1, Sz, and 
S,, which denotes the free surface of the jet between S 1  and S; (i.e., S ,  = 
s - s, - Sp). 
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For a steady-state flow tlic strcss cquntioii of motioii may he wit ten* 

0 = ( f ' f  - p7,b3) , ,  $- py (1 1 
where tii is the stress tensor, p is the densitly, u' is the velocity vector, and 
f" is the external body force vector per unit mass. Integrating eq. (1) over 
V and making use of Green's theorein10 we obtain 

Since the integral of a vector is riot in general a vcctor, wc make use of thc 
shifter g z M  defined]] as 

where 6 k K  = 1 if K = k and 6kK = 0 if K # k.  The quantities X M  and Z K  
represent the curvilinear and rectangular, Cartesian coordinates, respec- 
tively, of some point to  which all of the vectors in the integrand are shifted. 
The quantities xi and zk represent, respectively, the curvilinear and rec- 
tangular Cartesian coordinates of each point in the field of integration. 
Here (2) n1 is an outwaidly directed unit vector normal to the closed sur- 
face S. 

Let us consider our problem in cylindrical coordinates 

XI = e 
5 2  = z 
x3 = r 

(4) 

where z increases in the direction of flow. From eq. (3) 

912 = 9 3 2  = 0 

9 2 2  = 1 ( 5 )  
and the second component of eq. ( 2 )  becomes (if we take the external 
body force to represent the force of gravity) 

0 = ss [t2j - pv2vj]nj dS (6) 
Since the free surface of the jet is stationary 

0 = ss,t2jnj dS + s s , p ( v 2 ) 2  dS - s82p(v2)2 dS - sslt22 dS + ss2t22 dS (7) 
The fluid is taken to  be incompressible and the velocity profile a t  S2 is 
assumed to  be relatively uniform so that we may take the average of the 
square of v 2  to  be the square of the average of v2 

Here Q indicates the volume flow rate. 
* Latin indices indicate tensors with respect to coordinate transformations in 3-space; 

greek indices denote tensors with respect to surface coordinate transformations. Comma 
notation stands for rovariant differentiation% and the summation convention is em- 
ployed throughout. 
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Let us examine the surface equations of m o t i ~ n . ~ ~ . ~ ~  We neglect 
inertial effects in tlic surface, the effects of the surface viscosities, the 
effect of gradient,s in surface tension, and thc momentum exchange with 
adjacent phases due to inass transfcr to  ~ h t ~ a i n ' ~  

2 l I t L ' U  = - - h i ' ( ] )  ? L ( 1 ) j  - n(,)j  (9) 

Here n i ( K )  is a unit vector iiormal to the surface and outwardly directed 
into phase K ,  t i j ( K )  is the stress tensor adjacent to the surface in phase K ,  
u is surface tension, ni is a unit vector normal to the surface such that ( T ; ~ ~ ,  

z;2', n') have the same orientation as the tangents to the spatial coordi- 
nate curvesSa 

n, = eaBerslx;2 x ; i / 2  (10) 

X;,i = dxi/du" (11) 

The quantity erst  is defined as g1/2e,st, where g is the determinant of the ma- 
trix of gmn and e,sl is the skew-symmetric relative tensor such thatgd elz3 = 
1 (gmn being the metric tensor in 3-spacege) ; eaB is defined as eaB/allz, where 
eaB is the skew-symmetric relative surface tensor such thatgf el2 = 1 (a  being 
the determinant of the matrix of a,&. The mean curvature of the surface 
i s g b  

H = aaBba,9/2, (12) 

aap = gijx;aix;B5 (13) 

baa = -gmnn,,mz;; (14) 

aaS is the surface metric t e n s ~ r , ~ ~  

and baa is a symmetric tensor in Gauss's formulaegb 

We observe that for the case we wish to consider the surface has no normal 
component of velocity and that to good approximation (i.e., neglecting any 
distortion by the external body force) the surface is one of revolution. Ac- 
cordingly, the surface coordinates are chosen to be 

u1 = z1 

2 3  = f(U2) 

and on the surface 

From eq. (13) the components of the surface metric tensor are 

a11 = (f)' 
(17) a12 = 0 

a n  = 1 + (f')? 
Let us denote the liquid in the jet as phase 1 and the air surrounding the 
liquid jet as phase 2 .  

(18) 

Then in the coordinate system described above 

ni = n.i(z) = -ni(l) 
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and from eq. (10) 
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71, = 0 

n2 = -.f‘/[1 + (f’)2]’/? 

n3 = ] / [ I  + ($’)”’” 

From eq. (14)’ 

bll = -f/[l + (f”1’2 

022 = f”/ [l + (f’)21’/2 

biz = 0 (20) 

and we find the mean curvature of the surface from ey. (12) to  be 

The second component of eq. (9) becomes, in view of eq. (18), 

If we neglect any viscous effects in the surrounding air stream where the 
ambient pressure is po 

(23) ( ~ H u  - po)  n2 = t ( 1 1 2 j  n, 

which can be used to  evaluate the first term on the right of eq. (7). 
In choosing the axial location of X2 we specify that dv2/dxz = 0 a t  XZ. 

For a Newtonian fluid or for a generalized Sewtonian fluid (a special case 
of the Stokesian fluid14 for which y = 0 in Serrin’s eq. (59.3) and which 
includes all of the common empirical models for non-Newtonian behavior) 

this condition implies that 

s2:t‘2 = - p  (28) 

While this would not necessarily be true in the general case of a fluid 
described by the Coleman-Koll theory for simple  fluid^'^-'^ the assumption 
is commonly made that ey. (28j is approximately obeyed in all cases of 
 interest;'^^ this assumption is usually stated as requiring the stresses a t  
Sz to be “relaxed.” From the third component of eq. (9) we have 

2Hn3u = t (1 )3~nj  - !!(2)3’n, (29) 
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The assumption Bv2/dx2 = 0 a t  S2 implies that f’ = f ”  = 0 and 

S2: nl = n2 = 0, n3 = 1, 11 - - 1/(2f) (30) 

S2: - ~ / f  = 1 ( 1 ) 3 3  + p ,  (31) 

We neglect the viscous effects in the surrounding air stream and find 

Consistent with our assumption of a uniform profile in obtaining eq. (S), we 
take 

S2: 1(1)33 = - P (32) 

to conclude that 

Sp: p = u / R ~  + po = - t 2 2  (33) 

where R2 is the radius of the jets a t  S2. 

average normal stress acting a t  S1 
Returning to eq. (7), from eqs. (S), (24), and (33) we have for the 

where I, is the value of the cylindrical coordinate z a t  S2 ( x  is zero a t  SI). 
Here we have rewritten the first integral on the right of eq. (7) making use 
of the expression for the differential element of areagg 

dS = <a du‘ du2 (35) 

where 

u = det liaaoil 

3. Comparison with Previous Results 

If the effect of surface tension is neglected entirely in eq. (34), the first 
integral on the right becomes 

and eq. (34) reduces to  

which is in agreement, with the expression proposed by Metzner, Houghton, 
Sailor, and (Their normal component of stress is coniputed rela- 
tive to atmospheric pressure.) As White4 points out, Sakiadis3 incorrectly 
considers a vertical jet. 
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I‘ora. iicarly cylindrical jct (f’)z << 1 andf” 
the first integral 011 the right, of eq. (34) hecomcs 

0. With this assumption 

For most cases of practical importance c << po(Rz + R d / 2  

(39) 

If we assume the Poiseuille velocity profile a t  the exit, of tho tiibrls (this is 
justified only in the case of a Xewtonian fluid), 

$ l, (v2)2dS = 4/2 

and eq. (34) reduces to [in dimensionless from obtained by dividing 
through by pQ2/(Sd21 

where 

( W e ) - 2  = U ( S ~ ) ~ / ( ~ P Q ~ R ~ )  

This is not quite the result presented by Gavis and Middleman5 [their eq. 
( 2 ) ]  for a Xewtonian fluid: 

where 

(42) 

If radial changes in pressure are neglected (which is consistent with the 
assumption of a nearly cylindrical jet), and if it is assumed that t,, = - p 
at S1 (which is also consistent with the assumption of a nearly cylindrical 
jet for the case of a Newtonian fluid), from eqs. (29) and (43) we have 

p + pr + u/Ri  (44) 
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R6sum6 
L’analyse d’un jet stationnaire, symetrique pour une rotation qui permet de calculer 

I’expression de la tension normale moyenne B la sortie d’un tube capillaire, est reexaminee 
en attachant une attention particulibre B l’effet de la tension superficielle. On a pu 
montrer que l’expression donnee par Gavis et Middleman n’est valide que dans le cas 
limite d’un jet cylindrique. 

Zusammenfassung 
Die Analyse eines stationaren rotationssymmetrischen Flussigkeitsstrahls, die zu 

einem Ausdruck fur die mittlere Xormalspannung an der Ausflussoffnung einer Kapil- 
larrohre fuhrt, wird mit besonderer Berucksichtigung des Einflusses der Oberfllchen- 
spannung durchgefuhrt. Es wird gezeigt, dass der Ausdruck von Gavis und Middleman 
fur den Grenzfall eines nahezu zylindrischen Strahles gultig ist. 
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